Binomial Theorem - Class XI

Related Questions with Solutions

Questions

Quetion: 01

In questions below, If C_0 , C_1 , C_2 ,..., C_n are the combinatorial coefficients in the

expansion of
$$(1+\mathbf{x})^{\mathbf{n}}$$
, \mathbf{nLN} , then $C_0^2+C_1^2+C_2^2+\ldots+C_n^2=$ A. $^{2n}\mathbf{C}_n$

A.
$${}^{2n}\mathbf{C}_n$$

B.
$${}^{2n}\mathbf{C}_{n-1}$$

B.
$${}^{2n}C_{n-1}$$
C. ${}^{(2n}C_n)^2$

$$D. \binom{2n}{n-1}^2$$

Solutions

Solution: 01

$$\begin{array}{l} \overline{[1+x]^n = {}^n C_0 + {}^n C_1 x + {}^n C_2 x^2 + ... + {}^n C_n x^n} \\ [x+1]^n = {}^n C_0 x^n + {}^n C_1 x^{n-1} + ... + {}^n C_0 \\ \text{multiply} \\ [1+x]^{2n} = [{}^n C_0 + {}^n C_1 x + ... + {}^n C_n x^n] \, [{}^n C_0 x^n + ... + {}^n C_0] \\ {}^n C_0^2 + {}^n C_1^2 + ... + {}^n C_n^2 = \text{coefficient of } x^n \, \text{in} \, (1+x)^{2n} \\ = {}^{2n} C_n \end{array}$$

Correct Options

Answer:01

Correct Options: A